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Abstract

The rise of Large Language Models (LLMs) has revolutionized Natural Language Processing (NLP)
tasks, including the task of Grammatical Error Detection (GED). This paper explores the fine-tuning
of Greek-BERT and Meltemi models for improving GED in learners of Greek as a second language
(L2). Using error-annotated essays from the Greek Learner Corpus Il (GLCIl), we propose the
development of a tailored GED system that can address common error types in L2 Greek. While
foundational LLMs show strong performance in general linguistic tasks, advanced adaptation
techniques, including Prompt Engineering (PE) and Fine-tuning, offer enhanced task specialization.
Although PE techniques, such as zero-shot, one-shot, and few-shot PE, show promise, fine-tuning
proves to be more effective for specialized tasks like GED, allowing for deeper model adaptation.
Fine-tuning requires labeled data and involves adjusting a model’s internal parameters to prioritize
task-specific features. By using the rich data from GLCII, this paper highlights the importance of
specialized resources like GLCIl for advancing NLP in underrepresented languages and
demonstrates the significant impact of fine-tuning on language-specific tasks. Fine-tuned models
hold potential not only for enhancing learner feedback but also for supporting educators in more
efficiently assessing L2 Greek learners.

Key words: Grammatical Error Detection, Fine-tuning, Learner Corpora, Greek Learner Corpus,
Large Language Models

Introduction

The development of Large Language Models (LLMs) marks a significant breakthrough in the
field of Artificial Intelligence (Al), particularly for Natural Language Processing (NLP). These
models, rooted in the Transformer architecture (Vaswani et al., 2017), leverage massive
datasets to achieve impressive performance across a wide range of linguistic tasks,
demonstrating substantial flexibility and efficiency.

This paper focuses on the application of fine-tuning techniques using Greek-BERT and
Meltemi to develop a more effective Grammatical Error Detection (GED) system for
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learners of Greek as a second language (L2). Specifically, we utilize error-annotated essays
from the Greek Learner Corpus Il (GLCII) (Tantos et al. 2023), which forms our training
dataset. Our primary objective is to survey the current landscape of LLMs available for the
Greek language, present the GLCIl as a key resource, and discuss the potential for these
models to significantly improve GED for L2 learners of Greek.

While foundation LLMs exhibit exceptional performance across various NLP tasks, including
GED, further refinement is possible through advanced adaptation techniques. Two
prominent strategies for enhancing model specialization and robustness in specific tasks
are Prompt Engineering (PE) and Fine-tuning. These approaches allow models to surpass
baseline performance by tailoring their outputs more closely to the intricacies of targeted

language varieties.

AidpBuoe Ta EXAnuikd aTo mapakatw kelpevo "Ohds o koopogladuneg, Jyediv dhog) Exel Tnv

emBupia va g @ CIVATIAEL Kl va ayaméTal yia mavia. il S EATL
TIOW ag £V plinouc. To av elpaate yré, aTpélr, undy, -.\
10 npaypa, DR, 0 1610 KOTUOG, yevika 0 oTpE(T Koopog, Sev kataAaBa PEITITETIG KOl 1T

Qumy T YL, av ko oL ykél Bpuokdpacte navioy, Eipaote Ta nawbla, ta abéhdia, ot suvabeldal
Wo o1 LAG T OTPAT, Kot £X0UHE To 510 OVELPO VO EPWTEUTOUE KAL VA TTAVTPEUTOULE, Kl va
HeyahbooupE mawiid, ahAd yia kamow Adyo, autd Sev katakaBaivouy oL oTpET. H, av To
wataaBaivouy, Sgv oupduvoiv, Toug paivetal kAT NEplEgUC KARRAAAVEU0, aHapTIC. Ma yati;

Auto now Sev katahaBaivoupe, pofdpaote, anopeifoupE, ka katnyopifovpe. TQREPE Tapmod.

Na autd, motedw, Sev EMTPEMOUY 0L OTPELT, 1) Al OEV DENCETTErMERIPCUTOLA0TE 1 va
vioBeThooupe ol Asv £xE va KAVEL LE TO av Bo g sugic, 1 av nayann pag Ba
Titav apaptia. AnAg, eluacte Edvod yia Toug atpdir, kigwe avBpunous yeka, Sev pag apéaet
auTd mou pag eival Eéve. Na adto 1o Adyo, MaTedw TIWE g BTVALL EXOULLE Sukaiwpa va
TIOVTPEUTOUHE KaL va peyahmooupe maibid, yvati elpacte AvBpwol oav Toug atpé. Emiong,
eneldn) éxoupe [foe, yewkdtepa, Siokohes spmeipieg an {ur) pag, av Ta KaTaGEPOULE Kal
yivoups me Stvapol AvBpumoy, Ba exTyfooupe Ty aydnnuge eploadtepe, kal, emmiéov, Ba
EY0UPE KAMITEPES TXEOELS PE Ta TTandid pag, yati Ba ziuBD KaL papdl Tpane

emKowwviag pall Towg.”

i ChatGPT
To ehrvikd keljievo Tou napéBeos Mepyel pEpKA ouvTakTkd kat opBoypaduxa Aidn,
Napakatw Ba Bpew; T SopBupévn exboxr:

"Ohog o K(’wédu 6hog) £xer Trv emiBupia va Biwrcu\mmj KOL VO GYaMETal g

mavra. Autd elyalkan Bagik kal kAT Mou Lag ew pvBpuwous. To av eluagTE VKEL OTRELT,

t. BEV EXEL OXETN HE AUTA I Mpaypa. Opws, O TO10G KGOS, VEVKA 0 OTPET KGaHoE, Gev
watahaBalve THY

nandid, 1o adéhgua, oL ouvadehpol kat oL pikol Twy STRELT, Kal EXCUE To 1610 dvelpo va

pLa ko T Jun Twy yKEL av kat ol ykéL BpokdpasTte mavtol. Elpoote ta

EPWTEUTOUHE KOL Va TIAVTPEUTOULE, KOl va MEYaAMToUME TIaubid, alha ya kaTelo Adyo, autd Sev
o karakafaiveuy ot oTpéwT, H, av To katakafaivouy, Sev oupduvely, Tous paivetal kamt
mieplepyo, kAT napdvope, auaptia. Ma yiati; Autd mou Sev katahafaivoupe, dofépaate,
Tapmed. M autd, moTew, SEV EMTRETOU OL OTRELT, 1)

amopeig@ULE kol kaTnyoplaue. To ARy

arhiig, Gev B PEUOUAOTE 1) w0 UIoBETOUME LS. AEV EXEL va KAVEL g TO av Ba

finagiausadaiyoveis, 1 av n ayann pag Ba ritav apaptio. AMALG, EINA0TE EEVOL V1A TOUG TTPEIT,
a1 we avBpwion yehwd, Sev pag apéoel autd now pag elval Eévo, N' autd 1o kdyo, MoTeiw mwe
£jEle oL YKEL Exoupe Sikalwpa va mavipeutodps kai va peyahnaoupe nadid, vatl slpaarte

avBpuwol aav Tous aTpéwt, Emiong, emedn Exoupe Iioel, vevikdtepa, Sioxkokeg EMEpie oTn
Qi pacg, av 1a katadépoupe kal yivoupe mo Suvatol avBpwnoy, Ba ekTITOUME Ty ayann pag

TEPOGATERD, Kay, EMmASoy, Ba éyoups kad * oeg axfoeis Pe Ta mabid pae, viati Ba a@us Evay

4
o Badl kal papdi Tpimo emkowwiag pagy Toug."

Figure 1. Zero-shot prompting

Al6pBuwoe Ta AGbn 010 napakatw Kelpevo "H mOAn o yia epéva eivat 1o Kakitepn, yati pévw
ano £566) ano g yEvwnorg Hov. AuTr, Hou TIPOTdEPE TOAES VEE EUTIELDIES, PIAOL yIa TTAvTa Kal
TOAG GAAa Tpdypata. ZTnv noAn pag unapxouv oG dévpa kat apka. Mpw Séka xpovia
akpa napka, povoieg, {woloyikd Kijno kat arra. Otav £xw
Kamnolo npopAnua ry 8w puviiBug mmyaivw yia rikvik oty ¢uom. Eket, ou
TEPVAW TOV EAEUTENO XPOVO OTErePiYEL 0 HeyaADTEPOG TEXVNTOE KATapPaKG aTny Eupwmm).
APKETA efvat povo, va kaBopat 0To NApK, BAEMOULE KATAPPAKT KAt AKOUE TI§ TIOUAES TIwg
keAanbouv. Auto eivat 1o ADom 0 KGO paeivmmg,. To Bpadu, KUpLwS, TmMyaivoupe aTo KAQuTT, va
AKOUOAUE LOVOIKY), VA XOPEPOULE xav*n‘)pa. 'Otav fow UIKPOG, TNV YETOVIA Ho,
£nawda pe Toug Gidoug pou, Tou eivat TWPA BT BIAOK yia Tnv OAn Lwr. Eixape afaixaoteg
guyKapieg. XpetaleTe Alyo yia va eioat EVTUXIOEVOS, OV va EEpeis amAa 6Tt anohauBavete

£VIVE TOUPLOTIKG pHEPOS. Tipa, £xa

kaBe oTwypn). H {wnj eivat povo pia!" dnwg mapakatw: "Tya va okédropal 0Tt 6Aa £wat Kaka" =>
"Miya va gred 1 61 6Aa Ewvat kard"

ChatGPT
T KEIMEVO TIEPIEXEL APKETA 0pBOYPAdIKA KAl GUVTAKTIKA AGBN. AKoAouBE( 1) SlopBuwpévn popdr)

TOU KEWHEVOU:

"H rtéAn pou yua epéva eivat n kahotepn, yati pévw £5w and tn yéwwnor pov. Autr pou
TPOodEPE MOMES VEES epnelpieg, Pidoug yia mavta kat oG GAha pdypata. ZTtnv moAn pag
unapyouv ToAAG Sévtpa kat apka. Mpv and Seka xpovia EVIve TOUPLOTIKGS TIPoopLopds. Twpa,
£XOUHE AKOPQ EPLOOGTERQ NAPKA, Houoela, {wohoyikd Kijmo kat aAha. Otav éxw Kamnowo
TiPOBANua ) BEAw vvv‘[ewc TINyaive yia Tkvik ot uon. Exel, oou mepvw Tov
€AEUBEPO XPOVO Hov, UTAPREL 0 MEYAADTEPOG TEXVNTOS KATAPPAKTNG 0NV Eupwrn. ApKEel évo
va kaBopat 070 MAPKO, va BAETW TOV KaTapPAKTN Kat va akolw Ta ouALd va KeAandoly. Autd
glvatn Avon o ka8e mpoPANuaIaLEAs, Kupiwg, TNYAVOUKE 0TO KAGHTT Via Va GKOUTOUME
HOUGIKT], va XOPEYOUE KmpuA ‘Otav fiuouy pIKpdg, o yertovd pov, énalda pe
Toug diloug pou, Tou ivat wpa diAot yia 6An ) Lwn). Eixape aféxaoteg evkaipies. Xpealetal

Aiyo yia va gioat eutuiopévos, Hovo va Eépeig amia 6t anohapBavelg kabe otiypn. H {wr elvat

povo pia"

To napadewypa S10pBuwong mou £6woeg eivat owoTo Kat ehapudctnke avtiotolxn SiépBwon kat

070 KUPLO Kelpevo 6mou fitav anapaitro.

Figure 2 One-shot Prompting

PE is an approach that allows users to interact with LLMs by crafting inputs, or prompts,
that guide the model in generating tailored outputs. During inference, the model processes
the user’s input and produces a completion based on its understanding of the prompt.
Prompts can vary widely in format and content type, including text, images, audio, and
more (Schulhoff et al., 2024). They may include direct instructions, questions, examples, or
even additional data to shape the model’s response (Amatriain, 2024). Furthermore,
prompts can also specify the desired output’s format, style, and other specific

requirements (Schulhoff et al., 2024).
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Improving the quality of prompts is crucial for obtaining more accurate and relevant
outputs from LLMs. A variety of techniques exist for crafting structured prompts, ranging
from basic forms to more advanced strategies that improve model performance by giving
clearer, more context-rich inputs.

One key method in prompt design is in-context learning, where prompts are constructed
with detailed instructions and, in some cases, relevant examples to help the model perform
specific tasks more effectively. In-context learning is generally classified into three types:
zero-shot, one-shot, and few-shot inference.

e Zero-shot inference involves providing the model with only the instructions for a
task, relying entirely on its pretrained knowledge to generate a response.

e One-shotinference adds a single example to the prompt alongside the instructions,
giving the model a reference to base its output on.

o Few-shot inference takes this a step further by incorporating multiple examples
into the prompt, enabling the model to generalize better by learning patterns across
those examples while still following the instructions.

These types of in-context learning allow users to achieve more nuanced and effective
outcomes, particularly in specialized tasks that require adapting the model's broad
capabilities to narrower contexts.
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LudpBiwdE 1o MapardTw kelpevo "Elpal and T AlBawia kol Sl v 0o MEpypad TIC o
WRIES SimKomEs pou e6w oTnv EAAASA. Zw otrnv EANGGa 6 kal oA ypdwa H
kaBnuepnTdTITa pou elvan Soukelo otit, omin Souvkeio Eva kalokaip amodaoicape pe ToV avTpa
o ta radud pou wa mape Suakonds oo Napo. Eevape 1o tafib pag and 1o Apdw tou Neypaio.
Cpna pépa, fAes Kl dpopdn Bakasad. Dol Kataypadouy L Ta Krpata Tous 1 8da g
Balaggac. Ltnv dadpdun amnd 1o Nepaia atov Napo BAénoupe v 15pa, £va ukpd VgL
FTEMEVD THOV W OTO Bothwd KoL TO TILe wpale Kol TapaSoiars Tou vnoudu Ta yWandSoupLa o
METGPERONY TOUC TOUDLITES L0 aTo whiaL ETon pe Trv Béa Tng Bdkaooas grdaaue otov Mapo.
Eva avepomo wiioL moAl kovtd otny Sdkaocon. QAo Ta KTipe Bapdva pe AEuxS Ko Ta
Ma@adupa KoL oL MOPTES 08 Yahaluo KPuua. To viioL 1Tay YERGTO JE TOURLoTES TIou Punilaw ata
poyefd Tou Vool wpaia Koy TapadosaKd TpdyppaTa, H mputn kivngn oy kdvape ot
drdoape fytay va adigouue Tig makeuds oto Eevoboyeio dopéoaue Ta paylo pog ko kateuBela
o1 Sdkaooa. Eoto ko koupaludeor ard 1o takib rytav o pépa nodd anchavotnxn. T dedtepn
pEpa voudoaps S0 auTokiveTo Le oy dmows nryaue o moAka pém kovtd oo Napo, omwe
Kohuunitpes, Melwes, Zavia Mapua pex otov Nafo H kafnuepwvdmina pag ritav niuwe Bepansia
Founég otn Bakaooa, dawtd Kol SAdpouT anmd eva HEpOS TTRY AANN KOl ETIOKEPELS O TIoAAD
podo. MNepaoape dva 10Muepo vepdtn Spactpudtes, yahdpoon ol paBape ko rrohho

praisiigRiage mace gy L] Bl L} LLULLI L LY E i CLAULLL ] L. Ll LILHLLE ELJL URL) B X AW
AMAGTITA KOL TNV EWEVA ToU £Xouy oL AvBpwmol oTa vioma.” akchowBuvtas 1a napakatw
mopadelyuara yio AaBn ogng, oupduviog Koo omddoong yevoug: "Kol BEA wa puhdo yua To" =>
Bk va puiow yia 1o°, "oto Kpitn® == "gonw Kpnin®, "dvBpwnog and 1 onoia” == "dvBpwnog
amd Tov omoio”

ChatGPFT
P
Ac SwopBuooupe 10 kelpeve akohouwddvtas Tic obnyies gac yia MaBn ogne, oubuwiac Kal
and&oo g yEvous:

“Elpal and trw AkPovic Kol BEkD v Oag TERVDEYL TG T SROpdEs MaKoTIES Jou Bhu TTy
EAASa. Zw otrv EAhaSa e kal modhd ypdvia. H kalnuepundtntd pov eival Soukeud, omit,
Soukeud, omit Eva kakokaipl anodagigape pe tov dwbpa kot ta radud pou va naus Siakonds
arny Mdpo. Sexwvricope ©o Tagib pag amd 1o uda tou Newaud, Opala pépa, Mo ko dpopdn
Baroooa. DAoL KaTEypaday LE T KIVITA Tous Tn BEa tng 8dhaooas, Itn Swadpour and tov
Mewpowd oty Nape elfape Ty Yopa, £va KES vNol XTUFMEVD TTOVE OTO BOound KalL T4 To whpaia
Ko TapadooaKd Tou vigol, Ta yaidoupdKia Tow HETEGEROY TOUC TOUPLOTES Piaa gTo vijolL
Eroy, pe 1 8éa g Baloooas, ¢praosaps atny Mapo. Eva naviuopdo vnol odd Kovtd atrn
Biaooo, Dl 1a KTipw ATay Bappuévd o8 AUk Kal Ta mapdBupda kal ol mdptes g8 yakdlio
wpuwpa. To wnol fTav yeparo pe Tougiotes Tow uwalov o1a poyodld Tow wnowod wpala ko
MapaSoraKd TRayRaTo. H RwWTn Kivnom mow kavape STov GTasape rTov va adroouue Tig
anooxevts ato fevoboyelo, dopéoaue Ta payud pog ko niyapus kateuBeiov otn 8dkaooa. Eotw
kil Koupaouévol amnd 1o tafld, frav pa pépa mod anchauatikr. Tr Sedtepn uépa, voldoaue
EVO QUTOKITITO ME TO OTI0M0 TWOLE T8 TIoAAD pépn Kovtd otny Mape, dmws KohuumiBpe,
MEnaoeg, Davta Mapla péxm tov Nako, H koBnpepiwdtnTd pag frav nuoBepaneia, Bovmeg atn
Badoooa, doyntd kal ny Swabpopr and dva pfpoc oo GAho Ko eToKEpEL o8 ol pouoein.
Mepdoae £va Sexarfpepo veudro Spastnoudtnies, xarpwarn Kal pdBape mokhd mpdyuata ou
Sev Efpape. Exoupe avanroes Ty EAAGGa Joma Guopda LEpT) Mo £ KoL TV GTTAGTITO KOl T
EUYEVELD Taw avBpuiTew oTa vnoud."”

Figure 3 Few-shot prompting
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Figures 1-3 demonstrate the differences between zero-shot, one-shot, and few-shot
prompting as applied to GED using GPT-4 on essays from the GLCII (ref. Section 3).

In the zero-shot scenario (Figure 1), the user provides only an instruction to the model
(e.g., «ALOPBwWOE Ta EAANVIKA OTO TOPOKATW KELPEVO») along with the L2 Greek essay to
be corrected. While the model successfully identifies and corrects many errors, it also
introduces unnecessary paraphrases and creates new error instances. For example, in
the original text, «8gv éxel va kavel pe auto» ("it has nothing to do with this"), the model
rephrases it to «dev €xeL oxéon pe auto» ("it is not related to this"), which, although
semantically similar, is not a necessary correction. Additionally, it introduces new errors,
such as replacing the erroneous verb form «katnyopiloupue» ("we accuse") with another
erroneous form «katnyopiape» (a grammatically incorrect form of the verb "to accuse").

In the one-shot prompting approach, the user provides not only an instruction
(«AlopBwoe ta Aabn oto mapakdtw Keipevo») but also an example of a specific error
type and its correction. For instance, for an aspectual error, the example might be:
«MNAya va okédptopat otL 6Aa eival kaAd => Mrya va okedtw OTL OAa eivat kakd» ("l went
to think that everything is fine => | went to think [perfective aspect] that everything is
fine"). Including this example in the prompt enables the model to focus its corrections
more accurately on similar error patterns, particularly in verb usage, resulting in more
context-sensitive grammatical adjustments.

In the few-shot prompting scenario, the model is supplied with multiple examples of
error corrections before being asked to correct the essay. These examples cover a variety
of error types, such as:

o «KalBEAW va LAAw yla To» => «Kal BEAw va WAow yla To» (correcting aspect),
e «oto Kpntn => otnv Kpntn» (correcting preposition and gender agreement), and

e «avBpwrmocg ano tn omoia => AvBpwrtog amnod tov onoio» (correcting case and gen-
der agreement in relative pronouns).

Although few-shot prompting provides the model with a richer set of examples to guide its
corrections, the actual improvement in performance over zero-shot and one-shot
prompting is not always guaranteed. The effectiveness of few-shot prompting in significantly
enhancing grammatical error detection and correction remains inconclusive, as it does not
consistently outperform the simpler prompting methods in all cases. Nevertheless, it
presents a promising avenue for reducing model errors by providing additional context and
exemplars.

While prompt-based techniques can enhance the quality of a model’s output, fine-tuning
offers a significantly more robust and effective method for adapting Large Language
Models (LLMs) to specific tasks (Liu & Low, 2023, Wei et al., 2022). One of the key
advantages of fine-tuning is that it allows for additional training on a task-specific
dataset, utilizing labeled data directly relevant to the desired output. Unlike prompt
engineering, which relies on manipulating the input during inference, fine-tuning adjusts
the model’s internal parameters, building on its pretrained knowledge and optimizing it
for new, domain-specific data—without requiring a complete retraining from scratch.
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Following the fine-tuning process, a specialized version of the model is created, finely
tuned to a particular task and dataset. This leads to a more precise and targeted
response, as the model learns to prioritize relevant features from the new data. Fine-
tuning significantly increases the likelihood of higher-quality output, as the model is
explicitly trained to handle the nuances of the task, rather than relying on general-
purpose knowledge accumulated during its pretraining phase.

One of the strengths of fine-tuning is its capacity to incorporate large datasets with
numerous examples for a given task. This makes it especially valuable for tasks that
involve multiple categories or subcategories, such as GED. GED often requires the model
to identify and correct a wide range of errors, from verb tense to subject-verb
agreement, making the availability of varied and abundant labeled examples crucial.
While few-shot prompting can introduce some level of task-specific focus, it is limited
partly by the model’s context window—the maximum amount of information it can
process at once during prompting and partly by the fact that it is highly unlikely that the
training data of the LLM included vast amounts of the targeted language variety, L2
Greek in our case. These constraints signify that few-shot prompting can only offer a
limited number of examples, which may not cover the full complexity of a task like GED.

However, adopting fine-tuning comes with its own set of challenges. Collecting a
sufficient quantity of high-quality labeled data can be a time-consuming and resource-
intensive process. Fine-tuning is a more involved method compared to prompt
engineering, which only requires adjusting the input at inference time. Yet, when a
comprehensive and well-curated dataset is available—such as the GLCIl in our case—the
investment in data collection and fine-tuning pays off by enabling the development of a
reliable, task-specific model. The richness of GLCII allows us to conduct fine-tuning in a
way that covers a broad range of grammatical error types, ultimately leading to more
effective and nuanced error correction for learners of Greek as a second language.

Fine-tuning a pretrained language model in the context of language learning offers
substantial benefits for both students and educators. Language productions by L2
learners, whether in written or oral form, often represent a language variety that is not
typically covered in the foundational training of LLMs. By fine-tuning an LLM with data
specifically consisting of L2 learner productions, the model becomes adept at
understanding this unique variety of language, enabling it to generate contextually
appropriate and pedagogically useful responses. As a result, the fine-tuned model can
better align with the learner’s language usage and provide more personalized feedback,
having been trained on error-annotated data. This personalized feedback not only
targets common errors but also addresses the specific needs of individual learners,
ultimately enhancing the language learning process.

For educators, the benefits of fine-tuning extend beyond language variety adaptation. A
fine-tuned model can streamline the evaluation and grading of student work, offering
consistent, fair, and efficient assessments. By automating portions of this process, the
workload of educators can be reduced, allowing them to focus more on instructional
design and student engagement. Additionally, such a model can provide deeper insights
into a student's performance. By analyzing patterns in errors and progress, the model
can help teachers identify specific learning gaps and instructional needs for each student,
delivering more targeted and effective teaching strategies. This form of data-driven
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insight transforms the evaluation process from a simple assessment of correctness into
a detailed understanding of learner development.

This paper is organized as follows: Section 1 reviews the existing landscape of LLMs
available for the Greek language. Section 2 introduces the GLCII, which forms the core
dataset for our model. Section 3 presents the preprocessing steps required for fine-
tuning, addressing data preparation, annotation, and other foundational processes.
Finally, Section 4 concludes the paper by reflecting on the potential applications,
benefits, and future directions of the fine-tuned model for GED and language learning
support.

1. LLMs for Greek

1.1. GREEK-BERT (Koutsikakis et al., 2020)

GREEK-BERT is a monolingual, Transformer-based language model designed specifically
for modern Greek. Its architecture mirrors that of BERT-BASE-UNCASED, and it was
pretrained on a substantial 29GB corpus of Greek text. The dataset used for its training
includes several key sources of Greek-language data: the Greek section of Wikipedia
(https://dumps.wikimedia.org/elwiki/), the Greek portion of the European Parliament
Proceedings Parallel Corpus (Europarl) (Koehn, 2005), and the Greek subset of the OSCAR
corpus (Suarez et al., 2019, https://oscar-project.org/). This extensive pretraining
enables GREEK-BERT to effectively capture the nuances of modern Greek, making it a
powerful tool for a variety of NLP tasks.

To assess its performance, Koutsikakis et al. (2020) conducted a comparative analysis
between GREEK-BERT and several multilingual Transformer-based models, including XLM-
R, as well as M-BERT in both versions, M-BERT, M-BERT-CASED and M-BERT-UNCASED.
Additionally, they compared GREEK-BERT’s performance against more traditional models
like the BiLSTM-CNN-CRF (used for Part-of-Speech [PoS] tagging and Named Entity
Recognition [NER]) and the Decomposable Attention Model (DAM), which was used for
the Natural Language Inference (NLI) task. The evaluation was carried out across three
critical NLP tasks: Part-of-Speech (PoS) tagging, Named Entity Recognition (NER), and
Natural Language Inference.

The results demonstrated that GREEK-BERT performed competitively in the PoS tagging
task, showing similar results to the multilingual models. However, in the more complex
downstream tasks of NER and NLI, GREEK-BERT surpassed the other models, including
XLM-R and both versions of M-BERT. Its superior performance in NER and NLI highlights
the advantages of using a language-specific model over multilingual alternatives for
Greek, where task complexity and language-specific features play a crucial role in overall
model effectiveness.

1.2. Meltemi (Voukoutis et al., 2024)

Meltemi (Voukoutis et al., 2024) is a recently developed LLM for the Greek language,
created by ILSP (Institute for Language and Speech Processing). It was built through
continual pretraining of the Mistral 7B model (Jiang et al., 2023), focusing on expanding
its capabilities specifically for Greek while maintaining its bilingual competencies. The
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training dataset for Meltemi includes a diverse collection of Greek monolingual data
from various sources, alongside English monolingual data and English-Greek translation
data. This multilingual training strategy is employed to mitigate the phenomenon of
"forgetting" (where a model loses proficiency in previously learned tasks) and to
preserve the model's ability to operate effectively in both languages. Additionally, an
instruct fine-tuned version of Meltemi 7B was released, further optimizing the model for
task-specific applications.

The pretraining corpus for the instruct version of Meltemi includes translated Greek
preference triplets as well as English preference triplets, enabling the model to learn
from comparisons and preferences in both languages. This instruct fine-tuning enhances
the model’s ability to generate more context-aware and user-aligned outputs. In terms
of performance, both Meltemi 7B and Meltemi 7B Instruct outperform Mistral 7B in
several Greek-language benchmarks, particularly in areas of language understanding and
reasoning. They demonstrated superior results in Greek machine-translated versions of
English benchmarks and in Greek question-answering tasks. Meltemi 7B also excelled in
a specialized medical question-answering benchmark, further illustrating its applicability
to domain-specific tasks.

However, when evaluated on English-language tasks, Mistral 7B generally outperformed
the two Meltemi models, except in the TruthfulQA benchmark, where Meltemi 7B
Instruct surpassed Mistral 7B. This suggests that while Meltemi is highly optimized for
Greek-language tasks and some bilingual applications, Mistral 7B remains more effective
for purely English-language tasks, highlighting the trade-offs inherent in a bilingual
model design.

1.3. GreekBART (Evdaimon et al., 2023)

GreekBART (Evdaimon et al., 2023) is the first sequence-to-sequence pretrained
language model specifically designed for the Greek language, based on the BART BASE
architecture. Its training corpus is consists of several major Greek-language datasets: the
Greek section of Wikipedia (https://dumps.wikimedia.org/elwiki/), the Greek portion of
Europarl (Koehn, 2005), the Greek subset of the OSCAR corpus (Abadji et al, 2022,
https://oscar-project.org/), and the Greek Web Corpus (Outsios et al., 2018). The
model's performance has been evaluated on both discriminative and generative
downstream tasks. In the first evaluation, GreekBART was compared to other models,
including Greek-BERT, BART-random, and XLM-R, across four discriminative tasks: two
classification tasks, one Natural Language Inference (NLI) task, and one sentiment
analysis task. The results showed that GreekBART outperforms the other models in both
the classification and NLI tasks, demonstrating its superior ability to distinguish between
different language classes and infer relationships between sentences. However, Greek-
BERT exhibited stronger performance in the sentiment analysis task, suggesting that
BERT-based models may still have an edge in specific, nuanced language tasks that
require a deep understanding of emotional content.

In the second evaluation, GreekBART was compared to mBART 25, mBART 50, and BART-
random models on two generative tasks, specifically focused on summarization. The
results indicate that GreekBART's performance is comparable to that of BART-LARGE
models (MBART 25 and mBART 50), underscoring its effectiveness in generating coherent
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and accurate text summaries. This puts GreekBART on par with some of the most
advanced multilingual models available, particularly in tasks that require transforming
or summarizing large amounts of text.

1.4. HuggingFace - Model Hub!

The HuggingFace Model Hub (https://huggingface.co/models) serves as a vast repository
for LLMs, offering users the ability to both share and access a wide range of open-source
models. As of now, the platform hosts over 1,000,000 open-source LLMs, including 921
models that specifically support the Greek language. These Greek-compatible models
are either fine-tuned versions of existing LLMs or models that were originally trained on
multilingual datasets, which include Greek as part of their language repertoire.

Text Token Table Zero-shot Translation = Summarization
Classification Classification Question Classification
Answering
51 46 0 21 134 6
Question Feature Text Text2Text Fill-Mask Sentence
Answering Extraction Generation Generation Similarity
2 33 134 52 62 62

Table 1. Existing opensource Greek-compatible LLMs included in HuggingFace

Table contains the amount of HuggingFace's Model Hub models (to date) that support
Greek language in several Natural Language Processing tasks. As is apparent, a greater
number of models support Translation and Text Generation task among the range of NLP
tasks.

The HuggingFace Model Hub provides a diverse selection of models that support
numerous languages and can be applied to a broad spectrum of Natural Language
Processing (NLP) tasks. These tasks include but are not limited to text classification, text
generation, question answering, translation, and summarization. Each model is designed
to handle specific language tasks, enabling researchers and developers to select models
tailored to their unique requirements.

Beyond NLP, the HuggingFace Model Hub also contains models for tasks that go beyond
text-based applications. This includes models dedicated to Computer Vision, allowing
users to engage with tasks such as image recognition, object detection, and image
generation.

1 https://huggingface.co/models
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2. Greek Learner Corpus II (Tantos et al., 2023)

GREEK LEARNER CORPUS I
GLCH

M

[ WRITTEN ] [ SPOKE ]
L1 GREEK L2 GREEK L1 GREEK L2 GREEK
SPEAKERS LEARNERS SPEAKERS LEARMNERS

Figure 4 GLCII structural design (source: Tantos et al, 2023)

GLCll is the largest widely available learner corpus of Greek as a second language (L2). It
is a growing learner corpus and comprised of written and spoken productions of adult
L2 Greek learners, accompanied by a small control subcorpus with productions from
native speakers of Greek. The corpus also represents a wide spectrum of proficiency
levels, from beginner to advanced. The L2 Greek learners participating in GLCII attended
Greek language courses in Greece or abroad and most of their productions come from
instructed language learning context. The texts have been error-annotated for five
fundamental grammatical categories: Agreement, Voice, Gender, Case and Aspect. Each
category is equipped with a specific tagset to identify relevant error cases. Furthermore,
GLCll includes extensive descriptive metadata, relevant to learner’s linguistic profile (L1,
proficiency level etc.), sociocultural profile, demographic context (sex, age, country of
origin and educational level) and text and task related variables.

Proficiency level Written Spoken Total
Texts Word Texts | Word Tokens | Texts Word

Tokens Tokens
Al 18 1997 - - 18 1997
A2 125 16,139 42 ~20,605 167 ~36,744
B1 283 45,009 105 ~51,510 388 ~96,519
B2 480 90,548 86 ~42,190 566 ~132,738
Cc1 178 40,897 77 ~37,775 255 ~78,672
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C2 17 5,120 8 ~3,925 25 ~9045

Total 1101 197,713 318 ~156,005 1419 ~422,360

Figure 5 GLCII (currently) data (source: Tantos et al., 2023)

GLCII, being the most comprehensive database of L2 Greek productions to date will serve
as the basis dataset for fine-tuning the two foundation LLMs, Meltemi and GreekBART.

3. First steps for fine-tuning process

This section outlines the preliminary steps in fine-tuning the pretrained Greek-BERT and
Meltemi models for the GED task, specifically focusing on L2 Greek. As mentioned in
Section 1, fine-tuning is a supervised learning process that requires a labeled dataset
tailored to the specific downstream task. However, since there is no existing dataset
dedicated to GED for Greek, our first task was to create one.

To build this dataset, we utilized the GLCIl, an open-access resource that provides a
substantial amount of authentic language data relevant to the target linguistic variety.
The GLCIl already contains error-annotated texts, making it a valuable starting point for
constructing a dataset for GED. However, the existing annotations required refinement
to suit our specific needs.

For the already error-annotated texts, we conducted an exhaustive review to ensure the
accuracy and consistency of the error labels. This process involved filtering out any
erroneous or inconsistent annotations, adding new annotations for previously
undetected errors, and consolidating duplicate tags.

Throughout this annotation process, we adhered closely to the established GLCII
annotation scheme but made necessary modifications to enhance the dataset for our
fine-tuning purposes. In addition to span annotations, we introduced a relational
annotation layer specifically designed to capture Agreement errors more explicitly.
Agreement errors, such as those involving subject-verb agreement or noun-adjective
agreement, are now defined as relational errors between words. This approach allows
for a more detailed and comprehensive representation of these errors, improving the
quality of the training data. The tagset for these relational annotations aligns with the
GLCII's tagset, but with added clarity to define such errors that express their relational
nature, which will aid in the model's ability to detect them during training.

1. <<...6ev Ba ocwoouv 1o KOoWo...>> [=...will not save the world...]

2. <<..n petavaotevon Ponbdel va yepupwvel..>> [=..migration helps to
bridge...]

Annotating errors in L2 Greek poses unique challenges due to the complexity of Greek
morphology. One significant issue is ambiguity in certain error cases, where multiple
plausible annotations exist for a single error. The noun phrase to k6ouo in (1) presents
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two possible annotation options. In the first option, there is a gender disagreement
between the article and the noun, since the article to has a neuter gender, while the
following noun, koouo [=world], has been assigned a masculine gender by the learner.
However, in the second interpretation, kdouo could be interpreted as having been
assigned a neuter gender and, therefore, there is not gender disagreement but a gender
assighment case. Due to syncretism—the overlap between the accusative forms of
masculine nouns ending in -o¢ and neuter nouns ending in -o creates such ambiguity
instances.

In addition to ambiguity, there are cases where multiple annotations are required at the
same time. In (2), two annotation tags, one for Aspect and one for Voice, are necessary
to capture the fact that the verb form yepupwvet [=bridges] is incorrectly marked with
imperfective aspect and active voice, instead of its expected form.

For the error annotation process, we used INCEpTION (Klie et al., 2018), a widely
recognized and publicly available annotation platform that allows relational span
annotation. INCEpTION’s flexible interface enabled the smooth integration of the
relational annotation layer into our workflow, facilitating efficient error marking and
management, and ensuring the creation of a structured, high-quality dataset.

The next stage involves dividing the annotated dataset into three subsets: training,
evaluation, and test sets. This step is critical for properly assessing the performance of
the fine-tuned models on the GED task, allowing us to measure their effectiveness in
detecting grammatical errors in Greek learner productions. By structuring the data in this
way, we aim to crate the bases for comparing the robustness of LLMs that are asked to
detect and correct a wide range of grammatical errors specific to Greek as a second
language.

The next steps in the fine-tuning process involve dataset tokenization, where the raw
data is transformed into a format that the model can interpret. Specifically, the data is
first split into tokens, then converted into numerical representations, and finally into
tensors. For this, we will use the AutoTokenizer class from the Hugging Face
Transformers library, which automatically selects the appropriate tokenizer based on the
model architecture. Following this, we will utilize the Trainer class from the same library
to train our model.

Key tasks include loading the Greek-BERT and Meltemi models and creating a
TrainingArguments class instance that defines the required hyperparameters, such as
the optimizer and learning rate. Last step is to set up an evaluation function and initialize
a Trainer object, passing the model, training arguments, dataset, and evaluation function
as input parameters.

4. Conclusion

Large Language Models (LLMs) have seen remarkable advancements in recent years. The
development of Greek-specific models, such as GreekBART in 2023 and Meltemi in 2024,
underscores both the growth of LLMs and the importance of language-specific models.
However, many languages and language varieties remain significantly underrepresented
in the pretraining datasets of widely used LLMs. As a result, these models are less
effective at processing these less represented languages and language varieties
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compared to more dominant languages, like English. One such underrepresented variety
is the output produced by second language learners.

To mitigate this issue, techniques like fine-tuning offer a practical solution by adapting
LLMs to specific language varieties and tasks. Fine-tuning allows a pretrained model to
acquire specialized knowledge about the variety it is trained on, making it better suited
to handle the nuances of that variety. In our case, fine-tuning enables the model to
internalize and process the specific features of second language (L2) learner output. This
approach is more resource-efficient compared to training a model from scratch, as it
leverages the knowledge gained during pretraining while focusing on adapting the model
to a new task or language variety. For this process, high-quality datasets like the GLCII
are invaluable, as they provide authentic and diverse L2 learner data essential for
effective fine-tuning.

Fine-tuned LLMs designed for second language learning present numerous benefits for
both students and educators. For students, a fine-tuned model for GED can offer
immediate, accurate feedback tailored to their specific learning needs. Since the model
is trained on data from other L2 Greek learners with similar language profiles, it can
address the types of errors and challenges that students typically face, improving the
relevance and usefulness of the feedback. Additionally, using instruct versions of such
models can simulate real-world communication scenarios outside the classroom,
allowing students to practice and improve their language skills during self-study, thus
maximizing the effectiveness of their study time at home.

For educators, fine-tuned LLMs can serve as powerful tools for monitoring student
progress. These models can provide detailed insights into learners' performance,
identifying common errors and highlighting areas where individual students may need
more targeted instruction. This enables teachers to develop more personalized and
effective teaching materials, thus enhancing the overall learning experience. By reducing
the time spent on repetitive grading tasks and offering valuable diagnostic feedback,
fine-tuned LLMs not only improve learning outcomes but also help educators manage
their workload more efficiently.
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