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Abstract 

The evolution of Artificial Intelligence (AI) has led to the development of sophisticated machine 
learning algorithms capable of tackling complex classification tasks, including distinguishing speak-
ers based on linguistic features. This study evaluates the effectiveness of a deep learning algorithm 
in differentiating first language (L1) and second language (L2) speakers using specific acoustic fea-
tures. The algorithm was trained on formant frequencies (F1, F2, F3) and vowel duration extracted 
from speech samples of adult native English speakers and Cypriot Greek speakers of English as an 
L2. The model was rigorously tested using k-fold cross-validation and optimized through a grid 
search over various hyperparameters. The findings revealed that the model achieved high metrics 
in terms of accuracy, precision, recall, F1 score, and area under the curve. Therefore, the deep 
learning classifier effectively identified and utilized the acoustic features that distinguish L1 from L2 
speakers. Additionally, the results indicate the specific challenges L2 speakers face in producing L2 
vowels, as evidenced by their divergence from L1 productions. These findings underscore the po-
tential of deep learning algorithms to provide detailed insights into pronunciation difficulties en-
countered by L2 speakers. Such insights can be instrumental in developing more effective language 
learning strategies, tailoring pronunciation training to address specific issues faced by nonnative 
speakers. Moreover, these advancements can enhance language recognition technologies, making 
them more adaptable to the variations in speech patterns of L2 speakers. Overall, the study high-
lights the valuable role of AI in advancing our understanding of linguistic differences and improving 
language education and technology. 
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Introduction 

The challenges associated with producing nonnative or second language (L2) sounds are 
extensively documented in the literature (e.g., Georgiou & Themistocleous, 2021; Geor-
giou, 2021a, 2021b; Lee & Rhee, 2019; Piske et al., 2002). Difficulties in production are of-
ten attributed to learners’ inability to accurately perceive target sounds. This difficulty may 
arise from age-related developmental processes that make speech acquisition mechanisms 
more specialized for processing first language (L1) input, or from a decline in perceptual 
sensitivity due to adults’ extensive experience with their L1 (Iverson et al., 2003). Given 
these challenges, distinguishing between L1 and L2 speakers based on their speech charac-
teristics remains a complex task. This study aims to address this challenge by exploring how 
a deep learning algorithm can differentiate between L1 and L2 speakers by analyzing the 
acoustic characteristics of their speech. By leveraging advanced computational methods, 

mailto:georgiou.georg@unic.ac.cy


 

206 

the research seeks to enhance our ability to identify and distinguish between native and 
nonnative speakers with greater accuracy. 

Learners of a nonnative language face difficulties in acquiring sounds that do not exist or 
do not create contrast in their L1 (Bohn & Munro, 2007). For instance, the absence of the 
/ɪ – iː/ contrast in languages such as Catalan, Greek, Mandarin Chinese, and Spanish leads 
to perceptual and production challenges as both vowels are perceived as equivalents of a 
single vowel in the listeners’ L1 (Georgiou, 2021c, 2022a; Morisson, 2008; Yang et al., 2015). 
More extensive and complex L2 vowel systems compared to the listeners' L1 systems may 
exacerbate speech acquisition problems, as speakers will attempt to map all L2 sounds onto 
the limited number of L1 sounds (e.g., Georgiou et al., 2020; Hacquard et al., 2007; Iverson 
& Evans, 2007). For example, Georgiou et al. (2020) found that Russian learners of English 
with low vocabulary sizes assimilated English /ɪ/ and /iː/ to Russian /i/, English /e/ and /æ/ 
to Russian /e/, and English /ʊ/ and /uː/ to Russian /u/, resulting in moderate discrimination 
of these sounds. However, not just the size and complexity but also the crosslinguistic 
acoustic similarity between L1 and L2 sounds can predict L2 speech acquisition (Alispahic 
et al., 2017; Elvin et al., 2021; Georgiou, 2023a; 2024). For example, Albanian speakers, 
whose L1 includes seven vowels covering all five Greek vowel qualities, produced the Greek 
vowel /e/ more fronted and the Greek vowel /u/ more backed. This is because Albanian /e/ 
is more fronted than Greek /e/, and Albanian /u/ is more backed than Greek /u/ (Georgiou 
& Kaskampa, 2024; Georgiou & Giannakou, 2024). 

In recent decades, the advancement of Artificial Intelligence (AI) has fostered powerful 
technologies capable of performing complex classifications and predictions. Machine learn-
ing, a significant component of AI, has found widespread application in linguistics across 
both typical and atypical populations (Georgiou, 2023b; Georgiou & Theodorou, 2023; 
Johnson & Kang, 2015; Xiong, 2023). Deep learning, a subset of machine learning algo-
rithms, stands out by enabling computational models with multiple layers to learn data 
representations at varying levels of abstraction (LeCun et al., 2015). This capability has been 
leveraged in numerous studies where acoustic features serve as foundational elements for 
classification tasks (Dewa, 2016; Kobayashi & Wilson, 2020). For instance, Ferragne et al. 
(2019) employed deep learning techniques to classify speakers based on spectrograms of 
their production of the French vowel /ɑ̃/. The algorithm achieved a high accuracy rate of 
85%, demonstrating its effectiveness in distinguishing between different speakers based 
on this specific acoustic feature. Themistocleous et al. (2018) utilized deep sequential neu-
ral networks to detect mild cognitive impairment by analyzing acoustic features such as 
fundamental frequency and formant frequencies of vowels. Their model demonstrated 
high accuracy in distinguishing patients from healthy individuals, suggesting potential for 
early disease diagnosis enhancement. While existing research underpins deep learning’s 
efficacy in acoustic-based classification tasks, future investigations should aim to expand 
these methodologies to address classification challenges pertaining to L2 speakers. 

This study aims to investigate the ability of a deep learning algorithm to classify L1 and L2 
speakers of English on the basis of the acoustic characteristics of vowels. Specifically, the 
participants consisted of Cypriot Greek speakers of English as an L2 and L1 English speakers, 
who participated in controlled production tasks. As evidenced by several studies, Cypriot 
Greek speakers of English experience significant difficulties in perceiving and producing 
English vowels as a consequence of the influence of their L1 (Georgiou, 2019, 2022a, 
2022b). To the best of our knowledge, the use of a deep learning classifier based on 
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phonetic features has never been employed for this population. Taking into account the 
powerful capabilities of deep learning, it is expected that the algorithm will classify with 
success the L1 and L2 speakers.  

 

1. Methodology 

1.1. Participants 

The study included 18 participants elicited from Georgiou and Savva (2024). Among them, 
eight were adult Cypriot Greek speakers of L2 English, aged between 18 and 21 (Mage = 
20.13; SD = 1.36). At the time of the study, these participants were pursuing a BA in English 
Language and Literature and came from moderate socioeconomic backgrounds. Their Eng-
lish proficiency, as indicated by their CEFR certificates, was at the C1 level, and none had 
lived in an English-speaking country. According to their self-reported questionnaire data, 
they began learning English at an average age of 8.13 years (SD = 0.99), listened to English 
for an average of 6.13 hours per day (SD = 3.31), and spoke English for an average of 3.38 
hours per day (SD = 1.09). They rated their English-speaking skills at 4.25 out of 5 (SD = 
0.27). The control group consisted of 10 Standard Southern British English speakers as re-
ported by Georgiou (2024). All participants were female. All participants had normal vision 
and hearing and no history of cognitive or language disorders. They were informed about 
the study’s objectives and their rights before participating and provided written consent in 
accordance with the Declaration of Helsinki. The characteristics of the participants are 
shown in Table 1.  

 

Mean age in 
years(SD) 

English onset 
age in years(SD) 

English input in 
hours(SD) 

English use 
in hours(SD) 

English speaking 
skills; out of 5 

20.13(1.36) 8.13(0.99) 6.13(3.31) 3.38(1.09) 4.25 

 
Table 1: Participants’ characteristics 

 

1.2. Materials 

The study materials included 11 monosyllabic English words within an /hVd/ context, each 
representing one of the English vowels /ɪ iː e ɜː æ ɑː ʌ ɒ ɔː uː ʊ/. These words were embed-
ded in the carrier phrase “You say /hVd/ now”. 

 

1.3. Procedure 

1.3.1. Production task 

Each participant completed the assessment individually in a quiet environment. They were 
given phrases on paper and instructed by the researcher to read them aloud as if they were 
speaking to a friend. The phrases were written in Standard British English orthography. 
Their spoken responses were recorded using a professional voice recorder at a 44.1 kHz 
sampling rate and saved as .wav files with 24-bit resolution. Each participant read the 
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phrases twice, with the order of the phrases randomized for each participant. Before the 
test, it was ensured that participants knew the words and could correctly pronounce the 
target vowels by associating the words with other commonly used words containing the 
vowels being studied. 

 

1.3.2. Acoustic analysis 

The words from the speakers were isolated and analyzed using Praat software (Boersma & 
Weenink, 2024). By visually inspecting the spectrograms and waveforms, we were able to 
identify key acoustic features and measure vowel characteristics such as formant frequen-
cies and duration. The analysis settings included a 0.025-second positive window length, 
50 Hz pre-emphasis, and a spectrogram range of up to 5500 Hz (see Georgiou & Dimitriou, 
2023). Formant frequencies were measured from the end of the preceding consonant /h/ 
to the start of the vowel (V), ending at the end of the vocalic period, and the start of the 
following consonant /d/. To reduce the influence of neighboring sounds, measurements 
were taken at the midpoint of each vowel segment. Vowel durations were manually to de-
termine the start and end points for each vowel token. To accommodate the variation in 
F1, F2, and F3 values among all speakers, normalization was performed using the Lobanov 
z-score method (Lobanov, 1971). 

 

1.3.3. Training of the deep learning algorithm 

We utilized a deep learning algorithm for training the neural network mode using the h2o 
package (Fryda et al., 2024) in R (R Core Team, 2024). The dataset was then split into train-
ing and testing subsets with a 90-10 ratio to ensure a robust evaluation of the model’s 
performance. A comprehensive grid search was employed to optimize the architecture of 
the deep learning model. The hyperparameters included varying the number of hidden 
units and epochs. We leveraged crossvalidation with five folds to ensure generalization and 
prevent overfitting. The best model from the grid search was identified, and its perfor-
mance was evaluated on the testing dataset. Finally, the best-performing model from the 
hyperparameter grid was selected based on its evaluation metrics.  

The model was trained with the following vowel speech measures: F1, F2, F3, and duration.  
Formants are the resonant frequencies of the vocal tract, and they are crucial in determin-
ing the quality of the sounds we hear. More specifically, F1 corresponds to the tongue 
height, that is, the distance of the tongue from the roof of the mouth. F2 corresponds to 
the tongue frontness, that is, how front is the tongue when we produce a vowel. F3 is as-
sociated with lip rounding during the articulation of vowels (Georgiou, 2020). Formants are 
measured in Hertz (Hz). Duration refers to the length of time a vowel sound is articulated 
during speech and is typically measured in milliseconds (ms). All these features are im-
portant for the perception and production of vowels across most of the languages. For a 
schematic architecture of the deep learning model, see Figure 1. 
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Figure 1: Schematic architecture of the deep learning model. Data flows from the input 
layer (F1, F2, F3, and Duration) through 10 hidden layers consisting of 10 neurons each 

to the output layer (L1 and L2) 

 

The performance of the trained deep neural network model was evaluated using several 
key metrics on the testing subset. These metrics include accuracy, precision, recall, F1-
score, and the area under the receiver operating characteristic (ROC) curve (AUC). Accuracy 
measures the proportion of correctly classified instances among all instances in the dataset, 
providing an overall assessment of the correctness of the model. It is computed as (True 
Positives + True Negatives) / (Total Positives + Total Negatives + False Positives + False Neg-
atives). Precision quantifies the proportion of true positive predictions out of all positive 
predictions made by the model, highlighting how well the model avoids false positives. It is 
calculated as True Positives / (True Positives + False Positives). Recall assesses the ability of 
the model to correctly identify all positive instances, measuring the proportion of true pos-
itive predictions out of all actual positive instances. It is calculated as True Positives / (True 
Positives + False Negatives). F1-score is a harmonic mean of precision and recall, offering a 
balanced evaluation of the model's performance by considering both false positives and 
false negatives. This metric is calculated using the formula 2 * (Precision * Recall) / (Preci-
sion + Recall). ROC curve is a graphical representation showing the model’s ability to dis-
tinguish between classes at various threshold settings. AUC (Area Under the Curve) quan-
tifies the overall performance of the model in terms of its ability to differentiate between 
positive and negative instances. A perfect model would have an AUC of 1, while a random 
model would have an AUC of 0.5. A higher AUC value indicates a stronger model, whereas 
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an AUC value closer to 0.5 suggests that the model’s performance is not significantly better 
than random guessing. 

 

2. Results 

The results of the deep learning model indicated high classification scores for all metrics. 
These scores ranged from 0.83 to 1.00, indicating the high efficacy of the algorithm in as-
signing L1 and L2 speakers to their respective classes. More specifically, the highest scores 
were observed for precision and recall, followed by F1, accuracy, and AUC. Table 2 presents 
the scores of each metric, while Table 3 shows the metrics for each fold. Figure 2 illustrates 
the ROC curves of the training and testing datasets. The larger AUC score of the testing 
dataset compared to the corresponding AUC score of the training dataset indicates lower 
chances for overfitting. 

 

Metric Score 

Accuracy 0.84 

Precision 1.00 

Recall 1.00 

F1 0.85 

AUC 0.83 

 
Table 2: Scores for each metric 

 

 

Figure 2: Mean ROC curves and AUC values of the training (blue) and testing (red) sub-
sets. The dashed gray diagonal line shows the baseline. The shaded area indicated ± 1 

standard deviation from the mean for two curves. 
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Metric mean SD Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Accuracy 0.661538 0.090956 0.641791 0.756757 0.539474 0.622951 0.746667 

Precision 0.584571 0.100389 0.566038 0.71875 0.460317 0.531915 0.645833 

Recall 0.910818 0.10798 0.967742 0.71875 0.966667 0.961538 0.939394 

F1 0.701411 0.05216 0.714286 0.71875 0.623656 0.684932 0.765432 

AUC 0.720117 0.028864 0.691756 0.717262 0.697826 0.72967 0.764069 

  
Table 3: Metrics for each fold together with the means and SDs during crossvalidation 

 

3. Discussion 

The study implemented a deep learning neural network algorithm to classify L1 and L2 
speakers of English. The classifier was trained with speech features such as F1, F2, F3, and 
duration of English vowels elicited from controlled productions from both L1 and L2 speak-
ers. The goal was to gather various metrics from the algorithm to evaluate its performance; 
this would allow us to explore how L2 speech differentiates from the respective L1 speech. 

Our evaluation metrics demonstrated strong overall performance for the deep learning 
model in distinguishing between L1 and L2 speakers. This aligns with previous research sug-
gesting the high efficacy of deep learning in distinguishing groups based on acoustic fea-
tures (e.g., Themistocleous et al., 2018). We implemented rigorous validation techniques 
to ensure the reliability of our results. Initially, we employed established methods like k-
fold crossvalidation to evaluate the generalization performance of the model. Additionally, 
we conducted a grid search over a range of hyperparameters to optimize the model’s ar-
chitecture, focusing on the number of hidden units and epochs. The dataset was divided 
into two subsets: the training subset and the testing subset, comprising 90% and 10% of 
the data, respectively. The high metric values observed suggest that the model generalizes 
well to new, previously unseen data. Generalization is a key indicator of a model’s ability 
to perform accurately in real-world scenarios beyond the training data. The success of the 
model on the testing subset indicates that it has effectively captured the underlying pat-
terns in the data during training without overfitting, thus enhancing its reliability and utility. 

The results suggest that L2 speakers encounter difficulties with the accurate production of 
the L2 vowels. This research expands prior findings regarding the challenges Cypriot Greek 
speakers face in the acquisition of English sounds (e.g., Georgiou, 2019; 2022b; Georgiou 
et al., 2024). Although participants were advanced speakers of English, they were not able 
to produce the L2 vowels in a native-like manner. This might be due to the fact that explicit 
teaching of pronunciation does not typically occur in Cypriot Greek classrooms, where 
other linguistic levels are prioritized (Georgiou, 2019). In addition, as participants had never 
lived in an English-speaking country, chances for exposure to qualitative input in the L2 are 
minimal.  

By identifying specific acoustic features that distinguish L1 and L2 speakers, the study en-
hances our understanding of how nonnative speakers produce speech differently from na-
tive speakers. The findings can pinpoint specific areas where L2 speakers struggle, providing 
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valuable insights for linguists and language educators to develop targeted interventions to 
help learners improve their pronunciation. Insights from the study can inform the creation 
of pronunciation curricula that address the specific needs of L2 learners, using data-driven 
methods to focus on the most challenging aspects of pronunciation. Educators can be 
trained to recognize and address the common pronunciation issues faced by L2 learners, 
using evidence-based techniques to help students achieve better outcomes. The develop-
ment of classifiers that accurately distinguish between L1 and L2 speakers can improve 
speech recognition systems by allowing them to adapt to the specific characteristics of 
nonnative speech, thereby increasing their accuracy and usability for diverse user groups.  

 

4. Conclusion 

While the deep learning algorithm showed promising outcomes, future efforts should ex-
pand the participant pool to bolster the reliability of the results. Furthermore, upcoming 
research could enhance the algorithm by including more predictor variables, such as other 
acoustic measures extracted from speech samples (see Georgiou & Kaskampa, 2024). Inte-
grating these additional variables has the potential to enhance the ability of the model to 
predict accurately, leading to improved accuracy in distinguishing between L1 and L2 
speakers. 
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